

Published on Web 05/04/2009

Highly Diastereoselective Formal Nucleophilic Substitution of **Bromocyclopropanes**

Bassam K. Alnasleh, William M. Sherrill, Marina Rubina, Joseph Banning, and Michael Rubin* Department of Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832

Received January 26, 2009; E-mail: mrubin@ku.edu

Donor-acceptor cyclopropanes (DACs) have found widespread application in organic synthesis as equivalents of C3-electrophiles or all-carbon 1,3-dipoles.¹ A number of useful protocols employing DACs have been developed, including various nucleophilic additions,² [3 + 2],³ [3 + 3],⁴ and [3 + 4] cycloaddition reactions.⁵ DACs are typically accessed via the catalytic cyclopropanation of enol ethers with carbenoids generated from diazoacetates⁶ or via reaction of Fisher carbenes with electron-deficient olefins.⁷ We envisioned an attractive, alternative approach for expeditious preparation of DACs via a direct reaction between appropriate nucleophiles and halocyclopropanes. While it is well-recognized that classical nucleophilic substitution in strained carbocycles is highly disfavored, it does occur for the substrates possessing strongly electron-donating geminal substituents (eq 1),⁸ as well as in methylenecyclopropanes, assisted by the formation of an allylic carbocation (eq 2).⁹ Alternatively, formal nucleophilic substitution can also be achieved via a 1,2-elimination to generate a cyclopropene intermediate, followed by addition of a nucleophile across the strained double bond (eq 3). The latter transformation proceeds readily in the presence of vicinal electron-withdrawing groups;¹⁰ however, unsubstituted cyclopropyl halides have been shown to undergo this reaction as well, producing useful cyclopropanol¹¹ and cyclopropylamine¹² derivatives. However, the majority of the known reactions of this type (eq 3) either are nonselective due to harsh reaction conditions or have no potential selectivity issues, with only a handful of examples showing good site- or facial differentiations in polycyclic substrates where selectivity of addition is imparted by excessive rigidity and bulk.¹³ Herein we wish to report a novel, general protocol for the highly diastereoselective inter- and intramolecular formal substitution of bromocyclopropanes with a wide range of oxygen- and nitrogen-based nucleophiles.

In the course of optimization of the 1,2-dehydrohalogenation reaction of bromocyclopropane 1a (dr 1.2:1) en route to 3-methyl-3-phenylcyclopropene (2a),¹⁴ we observed formation of notable amounts of *tert*-butoxide adduct **3aa** (eq 4, $R^1 = Ph$, $R^2 = Me$). Apparently, alkoxycyclopropane 3aa was produced via a side process involving addition of the alkoxide across the double bond of 2a. Remarkably. the addition proceeded with very high facial selectivity, producing a single trans-diastereomer 3aa.¹⁵ Further studies revealed that alkoxycyclopropane 3aa can be obtained as the sole product in excellent yield when the reaction is allowed to run overnight at 80 °C (Table 1, entry

Table 1. Formal Nucleophilic Substitution of Bromocyclopropanes Nu-H

R²,...R¹

R², ...R¹

	$R^2 \xrightarrow{R^1} 18$ -crown-6	$B_{(cat)} \xrightarrow{R^2 \times R^1}$	+ ^{R^}	R1 (4))
			·	‴Nu	
	1 Br 2-Buok, 11	3	4		
no	R ¹ (R ²) ^{<i>a</i>}	Nu ^b	product	yield, % ^c	dr 3:4 ^d
1	Ph	t-BuO ^{h}	3aa	93	>25:1
2	Ph(Et)	t-BuO ^h	3ba	85	>25:1
3	Ph	<i>n</i> -PrO	3ab	99	16:1
4	Ph	<i>i</i> -PrO	3ac	96	18:1
5	Ph	Me ₂ NCH ₂ CH ₂ O	3ad	83	11:1
6	Ph	E-MeCH=CHO ^e	3ae	98	>25:1
7	Ph	PhCH ₂ O	3af	75	>25:1
8	Ph	Ac(Me)N	3ag	85	13:1
9	Ph	p-MeC ₆ H ₄ O	3aa	70^{i}	>25:1
10	o-HOC ₆ H ₄ CH ₂ NHCH ₂	t-BuO ^h	4ca	69	>25:1
11	CONEt ₂	t-BuO ^h	4da	87	1:20
12	CONEt ₂	<i>n</i> -PrO	4db	94	1:14
13	CONEt ₂	<i>n</i> -BuO	4dh	91	1:14
14	$CON(CH_2CH_2)_2$	$CH_2 = CH(CH_2)_3O$	4ei	92	1:20
15	$\text{CONHC}_8\text{H}_{17}$ - <i>n</i>	<i>n</i> -PrO	4fb	94	<1:25
16	$\text{CONHC}_6\text{H}_{13}$ - <i>n</i>	<i>i</i> -PrO	4gc	91	<1:25
17	CONHBu-t	t-BuO ^h	4ha	92	<1:25
18	CONHCHPh ₂	t-BuO ^h	4ia	75	<1:25
19	CONHBu-t(H)	t-BuO ^h	3ja	69	10:1
20	CO_2K^f	t-BuO ^h	4ka	79	<1:25
21	CO_2K^g	t-BuO ^h	4la	81	<1:25
22	CO_2K^f	<i>n</i> -PrO	4kb	83	<1:25
23	$CON(CH_2CH_2)_2$	N-pyrrolyl	4ej	85	1:14

 a R² = Me, unless specified otherwise. b Conditions: 18-crown-6 (10 mol %), t-BuOK (1.5–2.0 equiv), Nu-H (1.5–2.0 equiv), THF (0.1–0.2 M). c Isolated yields. d Determined by ¹H NMR of the crude reaction mixtures. ^e Allyl alcohol was used as a pronucleophile. ^f Quenched with MeI prior to isolation. ^g Quenched with allyl bromide prior to isolation. ^h t-BuOK (2.5-3.5 equiv total) was employed. ⁱ Only trace amounts of aryl ether 3ak were detected by GC analysis of the crude mixture.

1). Similarly, the reaction of bromocyclopropane 1b, bearing an ethyl substituent, provided tert-butyl ether 3ba in high yield (entry 2). Diastereoselectivity of the *tert*-butoxide addition was controlled by steric factors, ensuring the nucleophile approach from the least hindered face (i.e., cis to alkyl substituent R²). Inspired by this result, we rationalized that other, more nucleophilic species should easily outcompete tert-butoxide in the addition reaction.

To test this idea, we carried out the reaction of 1a in the presence of 1.5 equiv of t-BuOK with various pronucleophiles (eq 4, Table 1). We were pleased to find that both primary and secondary alkoxides underwent efficient addition, providing the corresponding cyclopropyl ethers 3ab and 3ac in high yields and excellent diastereoselectivities (Table 1, entries 3 and 4). Functionalized O-nucleophiles were also successfully employed in this transformation. 2-(Dimethylamino)ethanol reacted uneventfully affording 3ad in very high yield (entry 5). Reaction of 1a with allyl alcohol was accompanied with a base-assisted migration of the double bond providing potentially deprotectable¹⁶ vinyloxycyclopropane 3ae as the only product (entry 6). Benzyl-protected¹⁷ cyclopropanol **3af** was also obtained in good yield (entry 7). Addition of a nitrogenbased nucleophile, N-methylacetamide, also proceeded smoothly

producing cyclopropylamine derivative 3ag (entry 8). It should be emphasized that all the above-mentioned additions to 1a performed in the presence of pronucleophiles (entries 3-8) occurred with perfect chemoselectivity and very high diastereoselectivity, which was controlled by steric factors. Considering the relatively high nucleophilicity of phenoxides,¹⁸ we also attempted the reaction between *p*-methoxyphenol and **1a**. Surprisingly, only traces of arylcyclopropyl ether 3ak were detected in the crude reaction mixture; instead tert-butoxide adduct 3aa was obtained as the major product (entry 9).¹⁹ An attempt to add a phenoxide species in an intramolecular fashion was also made (entry 10). Nonetheless, addition of *tert*-butoxide took place providing 4ca as a sole product. Furthermore, it was found that the 2-(aminomethyl)phenolate moiety in 1c served as a very efficient directing group exclusively producing the cis-diastereomer of 4ca (entry 10). The reactivity of other functionalized bromocyclopropanes was tested next (Table 1, entries 11-23). It was found that both tertiary and secondary amides served as excellent directing groups, governing the addition of nucleophiles from the more hindered face. Thus, adducts with primary (4db, 4dh, 4ei, 4fb), secondary (4gc), and tertiary alcohols (4da, 4ha, 4ia) were obtained in high yields and perfect cisselectivity (entries 10-18). However, the reaction between tertbutoxide and enolizable carboxamide 1j afforded the product of conjugate addition 3ja with the thermodynamically more favorable trans-configuration (entry 19).¹⁹ Although strongly nucleophilic reaction conditions did not permit employment of ester-containing substrates,14b the corresponding diastereomeric potassium 1-methyl-2-bromocyclopropylcarboxylates could efficiently be used instead (entries 20-22). Subsequent treatment of the resulting alkoxycarboxylates with methyl or allyl halide provided esters 4ka, 4kb, and 4la, respectively, in good overall yields. Finally, pyrrole was successfully employed as an N-pronucleophile affording cis-Npyrrolyl adduct 4ej (entry 23). To further showcase the synthetic potential of this methodology, we explored intramolecular addition of tethered chiral alcohols en route to nonracemic bicyclic products (Scheme 1). Acylation of chiral amino alcohols with a racemic acyl

Scheme 1

chloride 5 provided amides 6 and 7 as mixtures of four diastereomers, which were subjected to the dehydrobromination conditions. Gratifyingly, both reactions exhibited perfect site selectivity: the intramolecular nucleophilic attack of the alkoxides in the cyclopropene intermediates 8 and 9 proceeded at only one of the diastereotopic sp²-carbon atoms (a), efficiently producing the corresponding bicyclic oxazepinones 10 and 11 as sole products.²⁰

In conclusion, a highly diastereoselective formal nucleophilic substitution of functionalized bromocyclopropanes with a wide range of oxygen- and nitrogen-based nucleophiles has been developed. It was shown that the selectivity in this reaction can be efficiently controlled by steric factors, by the directing effect of an appropriate functional group, or via a thermodynamically controlled isomerization. The application of this methodology to the expeditious synthesis of optically active bicyclic oxazepinones has been demonstrated.

Acknowledgment. Financial support from the University of Kansas and the National Science Foundation (EEC-0310689) is gratefully acknowledged. We also thank Dr. V. W. Day (X-ray Crystallography Lab, KU) for his help with X-ray analysis.

Supporting Information Available: Experimental details, procedures for preparation of starting materials, ¹H and ¹³C NMR spectral charts, and X-ray structure for compound 10. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For review, see: Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
 (a) Lifchits, O.; Alberico, D.; Zakharian, I.; Charette, A. J. Org. Chem. 2008, 73, 6838. (b) Lifchits, O.; Charette, A. Org. Lett. 2008, 10, 2809.
- (a) Morra, N. A.; Morales, C. L.; Bajitos, B.; Wang, X.; Jang, H.; Wang, (a) Holta, N. A., Wolacs, C. E., Bajtos, B., Walg, A., Jarg, H., Walg, J.; Yu, M.; Pagenkopf, B. L. Adv. Synth. Catal. 2006, 348, 2385. (b) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122. (c) Morales, C. L.; Pagenkopf, B. L. Org. Lett. 2008, 10, 157. (d) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc 2008 130 2842
- (4) See, for example: (a) Young, I. S.; Kerr, M. A. Angew. Chem., Int. Ed. 2003, 42, 3023. (b) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764. (c) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charrette, A. B. Org. Lett. 2008, 10, 698.
- (5) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Angew. Chem., Int. Ed. 2008, 47, 1107.
- (6) (a) Ni, A.; France, J. E.; Davies, H. M. L. J. Org. Chem. 2006, 71, 5594. (b) Miller, J. A.; Jin, W.; Nguyen, S. T. Angew. Chem., Int. Ed. 2002, 41, 2953.
- (a) Barlunga, J.; Fernandez-Rodriguez, M. A.; Garcia-Garcia, P.; Aguilar, E.; Merino, I. Chem.—Eur. J. 2005, 12, 303. (b) del Amo, J. C.; Mancheno, (7)M. J.; Gomez-Gallego, M.; Sierra, M. A. Organometallics 2004, 23, 5021.
- (8) See, for example: (a) Kozhushkov, S. I.; Spaeth, T.; Kosa, M.; Apeloig, Y.; Yufit, D. S.; de Meijere, A. Eur. J. Org. Chem. 2003, 4234. (b) Hollingworth, G. J.; Dinnell, K.; Dickinson, L. C.; Elliott, J. M.; Kulagowski, J. J.; Swain, C. J.; Thomson, C. G. *Tetrahedron Lett.* **1999**, 40, 2633. (c) Loeppky, R. N.; Elomari, S. J. Org. Chem. **2000**, 65, 96. See, for example: (a) Jonczyk, A.; Kmiotek-Skarzynska, I. Synthesis **1992**.
- 985. (b) Jonczyk, A.; Kmiotek-Skarzynska, I. J. Org. Chem. 1989, 54, 2756.
 (c) Shields, T. C.; Shoulders, B. A.; Krause, J. F.; Osborn, C. L.; Gardner, P. D. J. Am. Chem. Soc. 1965, 87, 3026.
- (10) (a) Jonczyk, A.; Kocmierowski, T.; Zdrojewski, T. New J. Chem. 2003, (a) John J. A., Rochindowski, A., Zadojewski, T. *Tetrahedron Lett.* 1984, 25, 4765.
 (b) Ishihara, T.; Kudaka, T.; Ando, T. *Tetrahedron Lett.* 1984, 25, 4765.
 (c) Parham, W. E.; McKown, W. D.; Nelson, V.; Kajigaeshi, S.; Ishikawa, N. *J. Org. Chem.* 1973, 38, 1361.
 (d) Taylor, E. C.; Hu, B. Synth. Commun. 1996, 26, 1041.
- (11) (a) Chiu, G.; Li, S.; Connolly, P. J.; Pulito, V.; Liu, J.; Middleton, S. A. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3930. (b) van Tilburg, E. W.; van der Klein, P. A. M.; von Frijtag Drabbe Kuenzel, J. K.; de Groote, M.; Stannek, C.; Lorenzen, A.; Ijzerman, A. P. J. Med. Chem. 2001, 44, 2966.
- (12) (a) Basle, E.; Jean, M.; Gouault, N.; Renault, J.; Uriac, P. *Tetrahedron Lett.* 2007, 48, 8138. (b) Tran, T. P.; Ellsworth, E. L.; Stier, M. A.; Domagala, J. M.; Showalter, H. D. H.; Gracheck, S. J.; Shapiro, M. A.; Joannides, T. E.; Singh, R. *Bioorg. Med. Chem. Lett.* 2004, 14, 4405.
- (a) Mueller, P.; Pautex, N. Helv. Chim. Acta 1988, 71, 1630. (b) Yamaguchi, (13)H.; Okamoto, T. Chem. Pharm. Bull. 1975, 23, 2907. (c) Weyerstahl, P.; Marschall-Weyerstahl, H.; Huelskaemper, L. Chem. Ber. 1986, 119, 1477.
- (14) (a) Sherrill, W. M.; Kim, R.; Rubin, M. Tetrahedron 2008, 64, 8610. (b) Sherrill, W. M.; Kim, R.; Rubin, M. Synthesis 2009, 1477.
- (15) Addition of *tert*-butoxide species in THF was previously observed in the base-assisted elimination of activated geminal dichlorocyclopropanes (see ref 13a) and in the synthesis of 1-phenylcyclopropenone acetal, see: Ando, R.; Sakaki, T.; Jikihara, T. J. Org. Chem. **2001**, 66, 3617.
- (16) Belov, V. N.; Savchenko, A. I.; Sokolov, V. V.; Straub, A.; de Meijere, A. Eur. J. Org. Chem. 2003, 551
- (17) (a) Guillerm, G.; Muzard, M.; Glapski, C. Bioorg. Med. Chem. Lett. 2004, 14, 5799. (b) Diez, D.; Garcia, P.; Marcos, I. S.; Garrido, N. M.; Basabe, P.; Urones, J. G. Synthesis 2003, 53.
- (18) Pearson, R. G.; Sobel, H.; Songstad, J. J. Am. Chem. Soc. 1968, 90, 319. (19) Nucleophilic addition of water, hydroxide, and sylanolate species did not
- proceed either. See Supporting Information for details.
- See Supporting Information for assignment of configurations by ¹H NOE NMR and X-ray crystallography.

JA900634M